
Team Lead Cheatsheet

1



What Should I handle?

Several topics

common things

work distribution

processes

HR

This is not a set of rules

... it is more or less just a couple of thoughts and ideas

let yourself be inspired

2



Common Things

Be firm and consistent

also to yourself!

The main goal is to learn something

do not prefer performance at the expense of learning

including knowledge sharing

3



Performance Optimization

Divide et impera style

each member is an expert in his/hers domain

Useful in short-term projects

less substitutability

similar to sprint races

Try to avoid this style of team leading

Even though a semestral project is a short-term project

Common Things

4



Knowledge Optimization

Almost necessary in long-term projects

similar to a Marathon race

Prefer pair or mob to solo programming

Open discussions about design, coding style, ...

It takes time, but it is worth it

Does someone know any particular technology you are about to
use?

Let him/her guide some other member to incorporate that

The knowledge should be shared

Common Things

5



Bus Factor

(The Bus Factor: link)

If the bus factor of your project is 1
YOU HAVE A SERIOUS PROBLEM

Common Things

The bus factor refers to the
number of people in your team
who can put your project in
trouble if they are hit by a bus.

“

“

6

https://medium.com/tech-tajawal/the-bus-factor-6ea1a3ede6bd


Roles of Leadership

From your perspective, there are two roles:

work coordination

technical supervision

You can take both roles

but it is not a shame to be just the first one

Coordination takes time and effort

Good coordination seems to be standard

Bad coordination causes significant issues

Common Things

7



More Eyes, Less Bugs

Refers to knowledge sharing

Encourage members to cooperate on every phase of the project

You can easily overlook a mistake you have produced

in the code

in the design

in the DB schema

Common Things

8



Watch Your Morale

Watch your pace

avoid fast start

avoid sprint on deadline

Continually contribute to your project

Common Things

9



Work Distribution

10



Pair Programming

Preferred over solo programming

Stable pairs

effective after synchronization

especially design and implementation decisions

might lead to lesser knowledge sharing

Rotating pairs

harder to get to know each other

higher knowledge sharing

Work Distribution

11



Pair Programming (cont...)

Pair of Dev and QA

knowledge sharing remained

less effective in design and implementation decisions

Work Distribution

12



Task Allocation

Vertical (#fullstack)

slightly slower development

everybody does everything

better knowledge sharing

Horizontal

creates experts

watch your bus factor

Work Distribution

13



Testing

Write unit tests

manual testing is also useful

Who does the testing?

the same pair?

or the other pair?

Work Distribution

14



Testing (cont...)

Same pair does testing

faster

the author's blindness

The other pair

slower

higher knowledge sharing

Work Distribution

15



Code Review

Opposite to design

Done by one person

faster

watch your bus factor

Done by whole team

slower

knowledge sharing

Work Distribution

16



Code Organisation

Horizontal view

based on functionalities

packages, modules

Vertical view

based on level of abstraction

classes and their relations

(Shake) but do not mix the layers

harded to achieve in vertical view

Work Distribution

17



Processes

18



Communication

Choose a suitable platform for communication

discord

mail

zoom, meet

phone

You are responsible for calendar scheduling of your team members

use reply-all instead of just reply

Processes

19



Regularity

Establish a time slot for brief meetings

once/twice per week

10-20 minutes maximum

Topics

Who did what

Who is about to do what

Any issues?

Processes

20



Issue Tracking

Establish an issue tracking platform

gitlab issues

trello (Atlassian)

youtrack (JetBrains)

Features vs bugs

Make it done

When?

By whom?

Processes

21



DoD - Definition of Done

Define what needs to be done in order to complete an issue

might be specific for some issues

try to keep your own team standard, however

Thoughts...

Who gives the approval?

What about tests? Code review?

Does it have a defined design?

Processes

22



Design

Think first before you code

Discuss within your team

come up together

...or independently

discuss with teammates anyway

Processes

23



Human Resources

24



Abnormal Members

Skillmaster

let him/her lead the development

important as a designer

important as a code reviewer

force him/her to less coding

he/her shall guide others

HR

25



Abnormal Members (cont...)

Beginner

force him/her to participate on all parts of the project

do not allow him/her work alone

rotate the buddy in his/hers pair

he/she should do the things, the buddy should organize

prefer multiple easy tasks over few complicated ones

HR

26



Conflict

Wait till they calm down

but do not wait indefinitelly

Discuss an issue without spectators

listen each side separately

then be a mediator

Prefer personal communication

written text hides MANY layers of communication

in case of online, turn on cams

HR

27



Conflict (cont...)

(PV168: Course Information)

HR

In case everything failed, share your problems with your assigned
Tech lead. ASAP!

“

“

28

https://pv168.pages.fi.muni.cz/info/


Time for Retrospective

How did you manage to lead your teams so
far?

29


