
PV168

Course Summary

1



What have you experienced?

Let's try to remember what has happened in PV168

What do you think about the real purpose of all that?

2



Programming is hard

It's not that difficult to fulfill

compiler's rules

current requirements

However, it's a completely different game

when other people are involved

and requirements evolve over time

3



Essential vs. Accidental Complexity

Essential complexity is integral part of the problem

cannot be eliminated completely

can only be minimized

Accidental complexity is what we add to the problem

by using inefficient tools

by using inefficient methodologies

by obscuring the intent in the code

4



Naming things is hard

Good names reveal the intent (semantics)

not the data type used (e.g. listEvent )

not the physical position (e.g. northPanel )

Good names lie in the problem domain

not in the solution domain (Computer Science "jargon")

Naming things remain hard

even for masters

Naming is an incremental process

5



Structure matters

The same problem can typically be represented in many different
forms

Some of them are better than the others

Deciphering bad structure is not what you want to do

6



Interactions with PMs are tough

Nothing is as evident/unambiguous as demos

misunderstanding are clearly identifiable

corrective actions can be planned

It's better to demo

less functionality but actually working

stuff you know why it's there

"When in doubt, leave it out" (Josh Bloch)

missing things are easy to spot

7



Functionality vs. Graphics

Functionality is important to have first

Graphics is also important but not at first

investing into it too early is typically waste

developers are seldom good visual designers

8



Duplicity is the Root of all Evil

Similarity is not necessarily duplicity

Magic numbers and string literals are almost always evil

in production code you have to use constants

however, in tests the situation is different

Repeated code blocks of the same semantics are always evil

9



Refactoring is hard

We need to have solid test suite in order to do it safely

Keeping increments small is tough and non-intuitive

What you typically do is Rewriting instead

10



Team work is hard

You've typically optimized the amount of code produced

Bus factor remains low

In PV168 the thing to optimize is the amount of stuff learned

In the industry you have to optimize the amount of functionality

For really difficult parts it's wise to go in tandem

"Doctors never operate alone" (Michael Feathers)

Camera turned on is a must for on-line cooperation

11



Copy & Paste can be dangerous

Unless you know what you're doing

When using sources such as Stack Overflow, Geeks for Geeks

you need to understand the difference in context

adapt the proposal to your specific case

and get to know the details to be able to defend the solution

12



Law of the Instrument

Especially newly gained tools/techniques tend to be "hammers"

Not a single thing is ultimately good for everything

You always need to think in context

If the only tool you have is a hammer, it is tempting to treat

everything as if it were a nail. (Abraham Maslow)

“

“

13



Source Code is Text

Programming by mouse isn't efficient

it's not accurate enough

it's not fast enough

it's exhausting your mental capacity

Programming is only a craft

not a science neither an art

Craftsmen have good tools and operate them efficiently

keyboard is the ideal tool for programmers

IDE is the ideal tool for programmers 14



Thank you for your hard work!

You've learnt a lot about programming already.

15


