
PV168

Parallelism

1

Parallelism In Modern Applications

Approaches:

explicit parallelism

thread pools

functional paradigm

Code example

Available here

2

https://gitlab.fi.muni.cz/pv168/seminars/counter/-/tree/lecture

Explicit Parallelism

Uses synchronization primitives

mutex, monitors, locks, atomics

Low-level approach

Easy to create a bug

Better to avoid

3

Explicit Parallelism

What is the difference between mutex and monitor?

Mutex is used to control the access to the critical section.

Monitor is a combination of mutex and condition variable.

Condition variable is another synchronization primitive

Sends notifications between threads.

4

Thread Pools

Separates thread management and the job specification

Either run-and-forget

... or retrieve the result via Future<T>

The synchronization is done via thread-safe queue

and via the Future<T> class when used

Suitable for stateful classes

Resembles to message passing in OOP

5

Thread Pools

Sounds easy, right?

6

Thread Pools

One should guarantee at most one operation runs concurrently on
the instance.

Synchronization must be done also between threads and the
stateful object.

It can be achieved by adding a queue to each object.

Furthermore, the queue in the Thread Pool becomes "the queue of
queues."

7

Functional Approach

Avoids manual thread management

Useful when data are independent to each other

stream-based data processing

without side-effects

➡️ not useful for stateful objects

Read-only accesses to stateful objects are fine

8

Other

fibres/coroutines

message passing

processes

9

Fibres/Coroutines

Asynchronicity independent to threads

Virtual function stacks

I.e., server may have each transaction in a separate fiber.

It would not be possible with 1:1 mapping threads to
transactions.

Remember - threads are just processes, hence large.

10

Message Passing

Similar to the Thread Pool approach.

No data sharing between classes.

Everything passed via messages.

The motivation is to prepare your environment for the next step

11

Processes

Do not create threads, run multiple processes

In case of crash, just once instance is down.

Better scaling - adhoc management

Multiprocessor execution

may run in different data centers

The protocol defines the correctness.

12

