PV168
Memory Model



Retrospective

e Did you understand what was done in the last seminar?
e Was it intuitively understandable?

e Are you able to describe how it works?
e Did you find it difficult?



Monitor

e The goal is to prevent concurrent access using the critical section.
e Do not use multiple monitors on the same data.
e Each object instance and the class itself has a monitor.

o Do not mix them.



Monitor
e Where to place BYCNRIEELE] 7

o in the method declaration
o in the method declaration

o inits own code block



Monitor

Counter {

getValue

getSameValue {
(this) {
value++;




Atomic numbers

e Useful for just-a-counter cases.
e Lower overhead
o Monitors are quite expensive.

o Can you say why?



Atomic numbers

Counter {
S - AtomicInteger(9);
getValue() {

value.getAndIncrement() ;




But how monitors and atomics work?



Memory Model

“ In computing, a memory model describes the interactions of
threads through memory and their shared use of the data.[1]

e Essential for any programming environment using parallelism.
e Consists of:

o Language specification

o Compiler specification (including optimizations)

o Hardware (JVM in Java)

[1]: https://en.wikipedia.org/wiki/Memory_model (programming).

»


https://en.wikipedia.org/wiki/Memory_model_(programming)

Memory Model

e Specifies: [2]
o synchronization points and actions
o what is affected by synchronization points
o what applies to memory access
= before the synchronization point
= after the synchronization point

e Defines Sequential Consistency and Happens-before relation.

[2]: https://docs.oracle.com/javase/specs/jls/sel7/html/jls-17 . html#jls-17.4

10


https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4

Sequential Consistency

“ Compilers are allowed to reorder the instructions, when this does

not affect the execution of the thread in isolation. [2]

e Also, t
e Also, t
e Also, t

ne JIT may reorder, delay, or cache accesses.

ne JVM may reorder, delay, or cache accesses.

ne CPU may reorder, delay, or cache accesses.

[2]: https://docs.oracle.com/javase/specs/jls/sel7/html/jls-17 . html#jls-17.4

»

11


https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4

Sequential Consistency

A =B =

// thread 1
r2 = A,
B =

// thread 2
r1 =
A =

e What are the values of and A

o It may happen that el 2 == 2

12



Synchronization Points

e Java has 4 types:

il olatile

o Atomic classes

i synchronized

o starts and joins of threads

13



Actions

e Action types:
o Load
o Store
o Synchronization
e Loads without any store are trouble-free.
e Any store requires a proper synchronization.
o Including all load accesses!

e Synchronization locks and unlocks the monitor.

14



Shared variables

e Shared variables (e.g. affected by the Memory Model):
o instance fields
o fields
o array elements
e Variables unaffected by the Memory Model.
o |local variables

o methods arguments, catched exceptions

15



Happens-before

e Transitive relationship of actions.

o “ |[f one action happens-before another, then the first is visible
to and ordered before the second [3]

e Applies to all synchronization points.
e Partially applies to all fields.

o After construction, no further synchronization is needed.

[3]: https://docs.oracle.com/javase/specs/jls/sel7/html/jls-17.html#jls-17.4.5

»

16


https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4.5

e Implements the memory barrier:
o accesses to [OEIERE s cannot be reordered
o subsequent accesses cannot be reordered before load
o prior accesses cannot be reordered after store
e Numeric operations are not atomic (E4. B&)
o Store of 64 bit values is done in two steps.
e DO NOT USE IT UNLESS YOU KNOW WHAT YOU ARE DOING!

17



VolatileExample {

)

= false;
writer {
X = 42;
flag = true;

reader {
(flag == true) {
System.out.println(x); // guaranteed to see 42.




Atomic classes

e Useful for numeric counters, gauges, and indicators.
e Thread safe for all basic numeric operations.

o Increments, decrements, assignment
e "Synchronizes properly as you would expect."

o Almost the same rules applies as for [EICIEREYs.

o Allows finer specification of memory ordering.

e DO NOT USE FOR OTHER THINGS THAN COUNTERS UNLESS
YOU KNOW WHAT YOU ARE DOING!

19



Atomic classes

AtomicExample {

AtomicBoolean(false);

writer
value = :
flag.set(true);

reader {
(!flag.get()) {} // busy wait here
System.out.println(value); // guaranteed to see 42.




synchronized

e When used in a method signature, it uses the monitor of the
instance.

o Or monitor of the class in case the method is [STXeEd.-

e When used in the body of a method, it uses the monitor of the
specified object.

doSomething { /* ... */ }
doSomethingElse {

(this.attribute) {/# ... #*/}

21



Threads

e Thread start and join have similar memory semantics as

synchronized}

o Any store which happened-before the start of the thread is
visible by the thread.

o Any store which happened-before the join of the about-to-join
thread is visible in the joinee thread.

22



Threads

ThreadExample {
run {

= Thread(() -> value *=
// value 1is 42

t.start();
t.join();
// value 1is guaranteed to be 84;

),

23



Fields

e Special rules apply to fields: [4]
o Set the final fields for an object in that object's constructor.

o Do not write a reference to the object being constructed in a
place where another thread can see it before the object's

constructor is finished.

o If this is followed, then when the object is seen by another
thread, that thread will always see the correctly constructed
version of that object's final fields.

[4]: https://docs.oracle.com/javase/specs/jls/sel7/html/jls-17.html#jls-17.5

24


https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.5

Double-Checked Locking

Is this correct?

00 {
= null;
Helper getHelper {
(helper == null) {
(this) {
(helper == null)
helper = Helper();

helper;




Double-Checked Locking Is Broken

And there is no way how it can be fixed.

26



How To Test The Correct Usage?

e Unit tests are insufficient.

o |In fact, no commonly used automatization approaches can
validate the correctness.

e To prove the correctness, one must provide a formal proof.

o This is the reason airplanes work in strictly single-threaded
environments.

27



Without correct synchronization,
very strange, confusing and
counterintuitive behaviors are
possible.

28



