
PV168

Memory Model

1

Retrospective

Did you understand what was done in the last seminar?

Was it intuitively understandable?

Are you able to describe how it works?

Did you find it difficult?

2

Monitor

The goal is to prevent concurrent access using the critical section.

Do not use multiple monitors on the same data.

Each object instance and the class itself has a monitor.

Do not mix them.

3

Monitor

Where to place synchronized ?

in the method declaration

in the static method declaration

in its own code block

4

Monitor

class Counter {
 private int value = 0;
 public synchronized int getValue() {
 return value++;
 }

 public int getSameValue() {
 synchronized(this) {
 return value++;
 }
 }
}

5

Atomic numbers

Useful for just-a-counter cases.

Lower overhead

Monitors are quite expensive.

Can you say why?

6

Atomic numbers

class Counter {
 private AtomicInteger value = new AtomicInteger(0);
 public int getValue() {
 return value.getAndIncrement();
 }
}

7

But how monitors and atomics work?

8

Memory Model

Essential for any programming environment using parallelism.

Consists of:

Language specification

Compiler specification (including optimizations)

Hardware (JVM in Java)

In computing, a memory model describes the interactions of
threads through memory and their shared use of the data.[1]

“

“

[1]: https://en.wikipedia.org/wiki/Memory_model_(programming) 9

https://en.wikipedia.org/wiki/Memory_model_(programming)

Memory Model

Specifies: [2]

synchronization points and actions

what is affected by synchronization points

what applies to memory access

before the synchronization point

after the synchronization point

Defines Sequential Consistency and Happens-before relation.

[2]: https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4 10

https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4

Sequential Consistency

Also, the JIT may reorder, delay, or cache accesses.

Also, the JVM may reorder, delay, or cache accesses.

Also, the CPU may reorder, delay, or cache accesses.

Compilers are allowed to reorder the instructions, when this does
not affect the execution of the thread in isolation. [2]

“

“

[2]: https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4 11

https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4

Sequential Consistency

A = B = 0

// thread 1
r2 = A;
B = 1

// thread 2
r1 = B;
A = 2;

What are the values of r1 and r2 ?

It may happen that r1 == 1 and r2 == 2 .

12

Synchronization Points

Java has 4 types:

volatile

Atomic classes

synchronized

starts and joins of threads

13

Actions

Action types:

Load

Store

Synchronization

Loads without any store are trouble-free.

Any store requires a proper synchronization.

Including all load accesses!

Synchronization locks and unlocks on the monitor.

14

Shared variables

Shared variables (e.g. affected by the Memory Model):

instance fields

static fields

array elements

Variables unaffected by the Memory Model:

local variables

methods arguments, catched exceptions

15

Happens-before

Transitive relationship of actions.

Applies to all synchronization points.

Partially applies to all final fields.

After construction, no further synchronization is needed.

If one action happens-before another, then the first is visible
to and ordered before the second [3]

“

“

[3]: https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4.5 16

https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.4.5

volatile

Implements the memory barrier:

accesses to volatile s cannot be reordered

subsequent accesses cannot be reordered before volatile load

prior accesses cannot be reordered after volatile store

Numeric operations are not atomic (++ , --)

Store of 64 bit values is done in two steps.

DO NOT USE IT UNLESS YOU KNOW WHAT YOU ARE DOING!

17

volatile

class VolatileExample {
 int x = 0;
 volatile boolean v = false;
 public void writer() {
 x = 42;
 v = true;
 }

 public void reader() {
 if (v == true) {
 //uses x - guaranteed to see 42.
 }
 }
}

18

Atomic classes

Useful for numeric counters, gauges, and indicators.

Thread safe for all basic numeric operations.

Increments, decrements, assignment

"Synchronizes properly as you would expect."

Almost the same rules applies as for volatile s.

Allows finer specification of memory ordering.

DO NOT USE FOR OTHER THINGS THAN COUNTERS UNLESS
YOU KNOW WHAT YOU ARE DOING!

19

Atomic classes

class AtomicExample {
 private int value = 0;
 private AtomicBoolean flag = new AtomicBoolean(false);
 public void writer() {
 value = 42;
 flag.set(true);
 }

 public void reader() {
 while (!flag.get()) {} // busy wait here
 //uses value - guaranteed to see 42.
 }
}

20

synchronized

When used in a method signature, it uses the monitor of the
instance.

Or monitor of the class in case the method is static .

When used in the body of a method, it uses the monitor of the
specified object.

public synchronized void doSomething() { /* ... */ }
public void doSomethingElse() {
 synchronized(this.attribute) {/* ... */}
}

21

Threads

Thread start and join have similar memory semantics as
synchronized :

Any store which happened-before the start of the thread is
visible by the thread.

Any store which happened-before the join of the about-to-join
thread is visible in the joinee thread.

22

Threads

class ThreadExample {
 public void run() {
 Integer value = 42;
 var t = new Thread(() -> value *= 2);
 t.start();
 t.join();
 // value is guaranteed to be 84;
 }
}

23

final Fields

Special rules apply to final fields: [4]

Set the final fields for an object in that object's constructor.

Do not write a reference to the object being constructed in a
place where another thread can see it before the object's
constructor is finished.

If this is followed, then when the object is seen by another
thread, that thread will always see the correctly constructed
version of that object's final fields.

[4]: https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.5 24

https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.5

Double-Checked Locking

Is this correct?

class Foo {
 private Helper helper = null;
 public Helper getHelper() {
 if (helper == null) {
 synchronized(this) {
 if (helper == null)
 helper = new Helper();
 }
 }
 return helper;
 }
}

25

Double-Checked Locking Is Broken

And there is no way how it can be fixed.

26

How To Test The Correct Usage?

Unit tests are insufficient.

In fact, no commonly used automatization approaches can
validate the correctness.

To prove the correctness, one must provide a formal proof.

This is the reason airplanes work in strictly single-threaded
environments.

27

Without correct synchronization,
very strange, confusing and

counterintuitive behaviors are
possible.

28

