
PV168

Logging, Errors and Transactions

1

General debugging

What is your go-to debugging method?

Basic printed statements

(...)

Debugger

2

General debugging

Printed statements are the easiest

Don't even require much knowledge of the language

Often effective for simple problems

3

static void transferMoney(User user1, User user2, int amount) {

 SomethingChecker.checkSomething(user1, user2);
 user1.deduct(amount);
 user1.doSomethingElse();

 System.out.println("Did we get here?");

 user2.add(amount);
 user2.doSomeCheck();
 }

4

General debugging

Debugger is the most powerful

Not always trivial to set up

Generally want to avoid having to use it

5

6

Errors & Exceptions

Expected runtime exceptions (e.g. input validation, file not found,
incorrect access rights...)

Unexpected runtime exceptions (e.g. ArithmeticException,
NullPointerException, ArrayIndexOutOfBoundsException)

Unexpected unrecoverable errors (e.g. NoClassDefFoundError,
OutOfMemoryError, IllegalAccessError)

7

Errors & Exceptions

Error and Exception are subclasses of Throwable

Indication that an unusual situation happened

Errors not to be handled, thrown by JVM

Exceptions handleable - Java has predefined Exceptions
(SQLException, FileNotFoundException...)

8

9

Errors & Exceptions

You can make your own by extending the Exception class:

public class IncorrectFileNameException extends Exception {
 public IncorrectFileNameException(String errorMessage) {
 super(errorMessage);
 }
}

Then throw it in a fitting situation:

10

try {

 // Attempt to do something where incorrect file name can be inputted.

} catch (FileNotFoundException e) {

 if (!isCorrectFileName(fileName)) {
 throw new IncorrectFileNameException("Incorrect filename : " + fileName);
 }

 // Continue handling the situation.

} finally {

 // Do this in any case.
}

11

Errors & Exceptions

Handling exceptions should not serve to simply prevent the
application from crashing.

Errors and exceptions should thrown in appropriate situations.

The message should be informative.

The goal is to make debugging as easy as possible.

12

Logging

A more sophisticated approach to tracking what is happening with
the code and data.

Can be outputted to the console, persisted in a file or re-directed to
any other I/O stream.

Again, the point is to make debugging easier.

13

Logging

Events should be labeled with an appropriate level:

TRACE - the most granular information; used to "trace" the path
through the code (line level)

DEBUG - variable value and other information of interest to the
dev, not the admin (method level)

INFO - general statements about what the application is doing
(feature level)

14

Logging

WARN - statement about a potentially risky action (e.g. config file
not found, using a backup server...)

ERROR - something actually went wrong

FATAL - something went so wrong the application needs to shut
down

Logs can be filtered based on that.

Watch out for size of the log file!

15

Logging

Java has a custom java.util.logging package.

Allows for creation, filtering, memory handling and basic
formatting of logs

16

source: Oracle.com

17

https://docs.oracle.com/en/java/javase/11/core/java-logging-overview.html

package cz.something;
import java.util.logging.*;

public class Bank {

 // Obtain a logger object.
 private static Logger logger = Logger.getLogger("cz.something.bank");

 public static void main(String argv[]) {

 // Log a TRACE level message
 logger.fine("Describing what I'm doing in detail.");

 try {
 user.withdraw(amount);
 } catch (Exception ex) {
 // Log the exception
 logger.log(Level.WARNING, "Cannot withdraw the inputted amount.", ex);
 }
 logger.fine("done");
 }
}

18

Logging

Can be configured to an extent.

Handlers can be set up for writing of logs to different streams.

FileHandler, StreamHandler, ConsoleHandler, SocketHandler...

public static void main(String[] args) {

 Handler fileHandler = new FileHandler("%t/bank.log");
 Logger.getLogger("").addHandler(fileHandler);
 Logger.getLogger("cz.something").setLevel(Level.FINEST);
 ...
}

19

Logging

The default Java logger is okay for basic use cases.

Several logging frameworks generally used for finer control and
extra features (e.g. automatic reloading of config files, graceful
recovery from IO failures, better performance...)

E.g.: Log4J 2, Logback, SLF4J...

20

Logging

As external packages logging frameworks need to be included in
your POM.xml.

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>${log-4j-api-version}</version>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>${log-4j-core-version}</version>
</dependency> 21

Logging

Log4J is configured using the log4j2.xml .

The end-user needs to define an appender, which contains
information about the output stream, formatting...

<Appenders>
 <File name="logger" fileName="output-file.log" append="true">
 <PatternLayout>
 <Pattern>%d{yyyy-MM-dd HH:mm:ss} %p %m%n</Pattern>
 </PatternLayout>
 </File>
</Appenders>

%d - date pattern, %p - log level, %m - message, %n - new line 22

Logging

And then enable it by including it among Loggers:

<Loggers>
 <Root level="error">
 <AppenderRef ref="logger"/>
 </Root>
</Loggers>

23

Logging

Usage is similar to the default Java logger:

import org.apache.logging.log4j.Logger;
import org.apache.logging.log4j.LogManager;

public class Something {

 private static Logger logger = LogManager.getLogger(Something.class);

 public static void main(String[] args) {
 logger.debug("Debug log message");
 logger.info("Info log message");
 logger.error("Error log message");
 }
} 24

Transactions

Transactions are a way of preserving consistency in data.

They ensure that when we are making a change in data, that we will
either do it correctly or not at all.

25

Transactions

ACID principles:

Atomicity - a transaction cannot be broken into smaller parts;
either the whole action is completed or it is not done at all

Consistency - a transaction cannot being in or end in an invalid
state

Isolation - a transaction is always done one at a time

Durability - once the transaction is finished, it stays finished
forever (e.g. saved to disk)

26

Transactions

The operation takes Runnable as an argument.

Runnable object is an executable block of code, similar to Main.

All calls in the block are executed or none of them are.

@Override
public void importData(String filePath) {
 transactionExecutor.executeInTransaction(() ->

 // delete data
 // validate import data
 // import all data
}

27

