PV168

Logging, Errors and Transactions

General debugging

e What is your go-to debugging method?
e Basic printed statements

e Debugger

General debugging

e Printed statements are the easiest
e Don't even require much knowledge of the language

o Often effective for simple problems

transferMoney
SomethingChecker.checkSomething(user1, user2);
user1.deduct(amount) ;

user1.doSomethingElse();

System.out.println(

user2.add(amount) ;
user2.doSomeCheck () ;

General debugging

e Debugger is the most powerful
e Not always trivial to set up

e Generally want to avoid having to use it

i< size; i+)
(es[i] =)
found

-
L

(; i< size; i+)

(0.equals(es[i]))
found

rem

main:11,

ate (a minute

Errors & Exceptions

e Expected runtime exceptions (e.g. input validation, file not found,
incorrect access rights...)

e Unexpected runtime exceptions (e.g. ArithmeticException,
NullPointerException, ArraylndexOutOfBoundsException)

e Unexpected unrecoverable errors (e.g. NoClassDefFoundError,
OutOfMemoryError, IllegalAccessError)

Errors & Exceptions

e Error and Exception are subclasses of Throwable
e Indication that an unusual situation happened
e Errors not to be handled, thrown by JVM

e Exceptions handleable - Java has predefined Exceptions
(SQLException, FileNotFoundException...)

Throwable

Error Exception

RuntimeException CheckedException

Errors & Exceptions

e You can make your own by extending the Exception class:

IncorrectFileNameException Exception {
IncorrectFileNameException {

super(errorMessage) ;

}
}

e Then throw it in a fitting situation:

10

{

// Attempt to do something where incorrect file name can be inputted.

(FileNotFoundException e) {

(!isCorrectFileName(fileName)) {
IncorrectFileNameException(+ fileName);

}

// Continue handling the situation.

{

// Do this in any case.

{

// Attempt to do something where incorrect file name can be inputted.

(FileNotFoundException e) {

(!isCorrectFileName(fileName)) {
IncorrectFileNameException(+ fileName, e);

}

// Continue handling the situation.

{

// Do this in any case.

Errors & Exceptions

e Handling exceptions should not serve to simply prevent the
application from crashing.

e Errors and exceptions should thrown in appropriate situations.
e The message should be informative.

e The goal is to make debugging as easy as possible.

13

Logging

e A more sophisticated approach to tracking what is happening with
the code and data.

e Can be outputted to the console, persisted in a file or re-directed to
any other I/O stream.

e Again, the point is to make debugging easier.

14

Logging

e Events should be labeled with an appropriate level:

o TRACE - the most granular information; used to "trace" the path
through the code (line level)

o DEBUG - variable value and other information of interest to the
dev, not the admin (method level)

o INFO - general statements about what the application is doing
(feature level)

15

Logging

e WARN - statement about a potentially risky action (e.g. config file
not found, using a backup server...)

e ERROR - something actually went wrong

e FATAL - something went so wrong the application needs to shut
down

e Logs can be filtered based on that.

e Watch out for size of the log file!

16

Logging
e Java has a custom package.

o Allows for creation, filtering, memory handling and basic
formatting of logs

17

source: Oracle.com

| Appiication MemoryHandier ————»/ Handler | ——— Outside World

18

https://docs.oracle.com/en/java/javase/11/core/java-logging-overview.html

Bank {

// Obtain a logger object.
= Logger.getLogger(

main {

// Log a TRACE level message
logger.fine(

{

user.withdraw(amount) ;

} (Exception ex) {
// Log the exception
logger.log(Level .WARNING,

Y

logger.fine();

}

Logging

e Can be configured to an extent.

e Handlers can be set up for writing of logs to different streams.

e FileHandler, StreamHandler, ConsoleHandler, SocketHandler...

{

= FileHandler() ;

Logger.getLogger("").addHandler(fileHandler) ;
Logger.getLogger () .setLevel(Level .FINEST) ;

20

Logging

e The default Java logger is okay for basic use cases.

e Several logging frameworks generally used for finer control and
extra features (e.g. automatic reloading of config files, graceful
recovery from IO failures, better performance...)

e E.g.: Log4d) 2, Logback, SLF4J...

21

Logging

e As external packages logging frameworks need to be included in
your POM.xml.

<dependency>
<groupId>org.apache.logging.log4j</groupld>
<artifactId>log4j-api</artifactId>
<version>${log-4j-api-version}</version>
</dependency>

<dependency>
<groupId>org.apache.logging.log4j</groupIld>
<artifactId>log4j-core</artifactId>
<version>${log-4j-core-version}</version>
</dependency>

Logging

o Log4) is configured using the [LLEEIR G-

e The end-user needs to define an appender, which contains
information about the output stream, formatting...

<Appenders>
<File name= fileName= append=
<PatternLayout>

<Pattern>%d{yyyy-MM-dd HH:mm:ss} %p %m%n</Pattern>
</PatternLayout>
</File>
</Appenders>

e %d - date pattern, %p - log level, %m - message, %n - new line

23

Logging
e And then enable it by including it among Loggers:

<Loggers>
<Root level= >

<AppenderRef ref=
</Root>
</Loggers>

24

Logging

e Usage is similar to the default Java logger:

org.apache.logging.log4j.Logger;
org.apache.logging.log4j.LogManager;

Something {

= LogManager.getlLogger(Something.class);

main {
logger.debug() ;
logger.info() ;
logger.error() ;

) 25

Transactions

e Transactions are a way of preserving consistency in data.

e They ensure that when we are making a change in data, that we will
either do it correctly or not at all.

26

Transactions

e ACID principles:

o Atomicity - a transaction cannot be broken into smaller parts;
either the whole action is completed or it is not done at all

o Consistency - a transaction cannot being in or end in an invalid
state

o |solation - a transaction is always done one at a time

o Durability - once the transaction is finished, it stays finished
forever (e.g. saved to disk)

27

Transactions

e The operation takes Runnable as an argument.
e Runnable object is an executable block of code, similar to Main.

e All callsin the block are executed or none of them are.

importData {
transactionExecutor.executeInTransaction(() ->

// delete data
// validate import data
// import all data

