PV168

Databases |l

JDBC: Architecture

DataSource

Oracle Driver

il

e

Cracle DB

>

Driver manager

o

I

JDBC Bridge

I
ODBC Driver

il

e

ODEC DB

Postgres Driver

JDBC API

Statement

T

>

Result Set

Prepared Statement

Connection

|

]

DataSource

Driver manager

JDBC Connection

e Transaction per statement execution

+ Can be disabled by
e Without auto commit / is required

e Rollback on error

e Must be closed

JDBC Connection Pooling

e Creating connection is expensive
e You don't always need a new physical connection
e Reuse physical connections across multiple logical uses

e Ability to setup the size of the connection pool

o H2 NEIH NI s 12108 (simple implementation) implements

interface (like most connection pool implementations)

Code Sample

Connection pool example

= JdbcConnectionPool.create(jdbcUri, username, password);

// After the {Connection#close()} is called,
// it is returned to the connection pool

(= dataSource.getConnection()) {
// Perform the operations

JDBC (Prepared) Statement

e Don't use BEatauand ' !
o INEVEILMER e protects against SQL Injection

e Closed when connection object is closed

e Must be closed explicitely anyway, why?

JDBC ResultSet

e Represents result of database

e |terator-like object over rows in result relation

e Should be closed (closed with [JE ISRt

Code Sample

// connection and statement should be both closed after we are done

(

= dataSource.getConnection();
= connection.prepareStatement

) A

ps.setLong(, departmentID); // set the
(= statement.executeQuery()) { // we should close the result set

(rs.next()) A
= rs.getLong() ;
= rs.getString() ;

Code Sample: Transaction

(= dataSource.getConnection()) {
connection.setAutoCommit(false);
(= connection.prepareStatement(
st.executeUpdate();

(isSomeError)
connection.rollback(); // maunal rollback

(= connection.prepareStatement(
st.executeUpdate();

}

connection.commit(); // manual commit

Employee Records Architecture

11

Layers Diagram

DB

Entity

Mapper --——---

]! Repository

Data Layer

Responsible for storing data in Database
Data represented by Entity object

Entities managed via Data Access Objects

In our project, DAOs receive a supplier for [laEIehste]slsE1al 03
o connection handlers provides a connection instance

o this will be useful when we will be working with transactions

13

Business / Model Layer

Representation of data according to business regirements
Business object can separate / aggregate entity data
Data represented by Model Objects

Model objects managed via Repositories

14

Connecting Data and Business

e Inideal case - only repositories can delegate to DAO
e Mapping between Entities and Model Objects

e Done by mappers

15

Why such separation?

e Data Presentation vs Data Storage

16

Validation

e In our project the mapper is validating the data

o Validation is always done when mapping Modelto Entity
Database specific validation:

e Better to validate before storing data to the database
o and other database types have fixed size

e Example: max length is 10 characters

17

Seminar Reflection

e What was problematic?

e Possible solution...

18

Enum Representation

e Database dependent
e Possible representations:
o Enums:
-
0 and check if database supports it

o Enum values as a separate table

19

Application State Initialization

Task 3: Departments are missing in the application

e Multiple enviroments: Production, Development, Test

e Each environment should have different prepared data
Possible solutions (not all):

 Data migrations - data directly to the database (run EEleIEIReH)

e Data initialization using code DEREIERY ~ > [l DIaTe DR RN kR

e [mport - data can be imported (next week)

20

Problems with Data Initialization

e When to run the initialization?
e How toinitialize the data?
o Separate command/action (explicit)
o At start, when database is empty (implicit)

o Special property/environment variable (explicit)

21

