
PV168

Testing

1

Why test?

Does it make sense to test your code?

Related to UX, nobody likes buggy software

Related to your team, nobody likes to change untested software

Your future self will thank you

2

Testing

Similar to sience

We have some assumptions about our code

We try to prove them

We investigate discrepancies and anomalies

3

How to properly test?

Jurassic Park testing

don't think about yourself as perfectionst

you can make mistake and you can't know everything

complex systems will fail

tests are not just some confirmation you MUST have

4

Few testing methods - Boundary
values

Just below nominal value

Nominal value

Just above nominal value

MIN and MAX

5

Equivalence Partitiong

dividing input data in data classes

for password input 4 - 10 characters

(1..3), (4..10), (10..MAX)

6

Use-case testing

use real data examples

imitate user actions

happy path

7

Decision table

many conditions, rules control

8

State transition

STATUS - many options

ACTION - change trigger

TRANSITION - from one state to other

test every status, every action, every transition -> every path

9

Pairwise testing

10

Pairwise testing

11

https://eviltester.github.io/TestingApp/apps/7charval/simple7charval
idation.htm

12

https://eviltester.github.io/TestingApp/apps/7charval/simple7charvalidation.htm

Test Categories

End-To-End Tests

User behaviour simulation (full application stack)

Hard to automate, slow, costly maintenance

Integration Tests

Testing interoperability of components

Faster and less complex than full-stack tests

Unit Tests

Testing components in isolation

Super-fast and easy result interpretation 13

Black-box vs White-box Testing

Black-box Testing

Only using public API of Unit/Component (without seeing the
internals)

Concentrating on scenarios (implementation details are
irrelevant)

Default option (for new code)

White-box Testing

Test-cases are driven by the internals of Unit/Component

Enforces internal data structures and design
14

Testing ice cream cone

15

Testing Pyramid

16

Why Unit test?

The cost of the bug raise exponentially with time

17

Code Coverage

Percentage of production code covered with tests

Ideally close to 100%

Might be difficult to achieve

Demanding particular coverage (e.g. 80%) leads to problems

Cheating with poor tests to fulfill metrics

Even 100% coverage may not be enough

Quantity cannot trump quality

18

When to Write a Test

Test-first development

Write code after writing Unit/Integration tests

Leads to loosely-coupled, reusable and testable code

Ideally follow TDD

Test-last (if ever) development

Write all the code, then (maybe) some tests

Unfortunately still very common in the industry (school-style)

Leads to compact, highly-cohesive, hard-to-test code

19

Test Anatomy

Given (Arrange)

With certain environment

When (Act)

Certain action is performed

Then (Assert)

Assert expected outcome

20

Test Isolation

Tests don't interfere with each other

Each test responsible for Setup and Teardown

Share only stateless and expensive resources

Higher testing level leads to lower restrictions

Strict test order is not acceptable at Unit level

... but might be OK at Integration level

21

JUnit5 Framework

Annotation driven (mostly at method level)

@Test used to mark test methods

@BeforeEach / @AfterEach for per test setup/teardown

@BeforeAll / @AfterAll for shared setup/teardown

Must be static (once per all tests in single class)

Highly extendable

22

Assertions in JUnit5

Default JUni5 Assertions API

Assertions based on matchers (e.g. Hamcrest)

Fluent assertion libraries (e.g. AssertJ)

23

Component Dependencies

Car > Engine > Cylinder

Design for loose coupling and IoC

Control your objects' dependencies

Use testing implementations

24

Test Doubles

“Looks real but actually isn't!”

Stub double

Returns predefined values

Spy double

Tracks interactions

Fake double

Fully functional implementation

... not suitable for production
25

